Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Natl Cancer Inst ; 107(12): djv274, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26464423

RESUMO

BACKGROUND: Cancer cachexia is a debilitating condition that impacts patient morbidity, mortality, and quality of life and for which effective therapies are lacking. The anticachectic activity of the novel HDAC inhibitor AR-42 was investigated in murine models of cancer cachexia. METHODS: The effects of AR-42 on classic features of cachexia were evaluated in the C-26 colon adenocarcinoma and Lewis lung carcinoma (LLC) models. Effects on survival in comparison with approved HDAC inhibitors (vorinostat, romidepsin) were determined. The muscle metabolome and transcriptome (by RNA-seq), as well as serum cytokine profile, were evaluated. Data were analyzed using mixed effects models, analysis of variance, or log-rank tests. All statistical tests were two-sided. RESULTS: In the C-26 model, orally administered AR-42 preserved body weight (23.9±2.6 grams, AR-42-treated; 20.8±1.3 grams, vehicle-treated; P = .005), prolonged survival (P < .001), prevented reductions in muscle and adipose tissue mass, muscle fiber size, and muscle strength and restored intramuscular mRNA expression of the E3 ligases MuRF1 and Atrogin-1 to basal levels (n = 8). This anticachectic effect, confirmed in the LLC model, was not observed after treatment with vorinostat and romidepsin. AR-42 suppressed tumor-induced changes in inflammatory cytokine production and multiple procachexia drivers (IL-6, IL-6Rα, leukemia inhibitory factor, Foxo1, Atrogin-1, MuRF1, adipose triglyceride lipase, uncoupling protein 3, and myocyte enhancer factor 2c). Metabolomic analysis revealed cachexia-associated changes in glycolysis, glycogen synthesis, and protein degradation in muscle, which were restored by AR-42 to a state characteristic of tumor-free mice. CONCLUSIONS: These findings support further investigation of AR-42 as part of a comprehensive therapeutic strategy for cancer cachexia.


Assuntos
Caquexia/tratamento farmacológico , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Experimentais/complicações , Fenilbutiratos/farmacologia , Redução de Peso/efeitos dos fármacos , Adenocarcinoma/complicações , Tecido Adiposo/efeitos dos fármacos , Administração Oral , Animais , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/prevenção & controle , Carcinoma Pulmonar de Lewis/complicações , Neoplasias do Colo/complicações , Citocinas/biossíntese , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Interleucina-6/metabolismo , Canais Iônicos/metabolismo , Fator Inibidor de Leucemia/metabolismo , Lipase/metabolismo , Fatores de Transcrição MEF2/metabolismo , Camundongos , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fenilbutiratos/administração & dosagem , Receptores de Interleucina-6/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Análise de Sobrevida , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/metabolismo , Proteína Desacopladora 3
2.
Proc Natl Acad Sci U S A ; 111(12): 4525-9, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24616506

RESUMO

MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression and, in cancers, are often packaged within secreted microvesicles. The cachexia syndrome is a debilitating state of cancer that predominantly results from the loss of skeletal muscle mass, which is in part associated with apoptosis. How tumors promote apoptosis in distally located skeletal muscles has not been explored. Using both tumor cell lines and patient samples, we show that tumor-derived microvesicles induce apoptosis of skeletal muscle cells. This proapoptotic activity is mediated by a microRNA cargo, miR-21, which signals through the Toll-like 7 receptor (TLR7) on murine myoblasts to promote cell death. Furthermore, tumor microvesicles and miR-21 require c-Jun N-terminal kinase activity to regulate this apoptotic response. Together, these results describe a unique pathway by which tumor cells promote muscle loss, which might provide a great insight into elucidating the causes and treatment options of cancer cachexia.


Assuntos
Apoptose/genética , Caquexia/patologia , MicroRNAs/fisiologia , Músculo Esquelético/patologia , Neoplasias/complicações , Organelas/genética , Receptor 7 Toll-Like/fisiologia , Animais , Caquexia/etiologia , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias/patologia
3.
J Cachexia Sarcopenia Muscle ; 5(4): 321-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24668658

RESUMO

BACKGROUND: Muscle wasting is a profound side effect of advanced cancer. Cancer-induced cachexia decreases patient quality of life and is associated with poor patient survival. Currently, no clinical therapies exist to treat cancer-induced muscle wasting. Although cancers commonly associated with cachexia occur in older individuals, the standard animal models used to elucidate the causes of cachexia rely on juvenile mice. METHODS: In an effort to better model human cancer cachexia, we determined whether cachectic features seen in young mice could be achieved in adult, pre-sarcopenic mice following colon 26 (C-26) tumor cell inoculation. RESULTS: Both young and adult mice developed similar-sized tumors and progressed to cachexia with similar kinetics, as evidenced by losses in body mass, and adipose and skeletal muscle tissues. Proteolytic signaling, including proteasome and autophagy genes, was also increased in muscles from both young and adult tumor-bearing animals. Furthermore, tumor-associated muscle damage and activation of Pax7 progenitor cells was induced in both young and adult mice. CONCLUSIONS: Although cancer cachexia generally occurs in older individuals, these data suggest that the phenotype and underlying mechanisms can be effectively modeled using the currently accepted protocol in juvenile mice.

4.
J Clin Invest ; 123(11): 4821-35, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24084740

RESUMO

Cachexia is a debilitating condition characterized by extreme skeletal muscle wasting that contributes significantly to morbidity and mortality. Efforts to elucidate the underlying mechanisms of muscle loss have predominantly focused on events intrinsic to the myofiber. In contrast, less regard has been given to potential contributory factors outside the fiber within the muscle microenvironment. In tumor-bearing mice and patients with pancreatic cancer, we found that cachexia was associated with a type of muscle damage resulting in activation of both satellite and nonsatellite muscle progenitor cells. These muscle progenitors committed to a myogenic program, but were inhibited from completing differentiation by an event linked with persistent expression of the self-renewing factor Pax7. Overexpression of Pax7 was sufficient to induce atrophy in normal muscle, while under tumor conditions, the reduction of Pax7 or exogenous addition of its downstream target, MyoD, reversed wasting by restoring cell differentiation and fusion with injured fibers. Furthermore, Pax7 was induced by serum factors from cachectic mice and patients, in an NF-κB-dependent manner, both in vitro and in vivo. Together, these results suggest that Pax7 responds to NF-κB by impairing the regenerative capacity of myogenic cells in the muscle microenvironment to drive muscle wasting in cancer.


Assuntos
Caquexia/etiologia , Caquexia/metabolismo , Músculo Esquelético/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição PAX7/metabolismo , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Caquexia/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Nus , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Desenvolvimento Muscular , Músculo Esquelético/patologia , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patologia , Fator de Transcrição PAX7/genética , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/patologia , Microambiente Tumoral , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...